References
Shariff, K. & Leonard, A. Vortex rings. Annu. Rev. Fluid Mech. 24, 235–279 (1992).
Saffman, P. G. in Cambridge Monographs on Mechanics 192–208 (Cambridge Univ. Press, 1993).
Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).
Needleman, D. & Shelley, M. The stormy fluid dynamics of the living cell. Phys. Today 72, 32–38 (2019).
Happel, J. & Brenner, H. Low Reynolds number hydrodynamics: with special applications to particulate media. In Prentice-Hall International Series in the Physical and Chemical Engineering 23–57 (Prentice-Hall, 1965).
Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Progress Phys. 72, 096601 (2009).
Childress, S. & Dudley, R. Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in Reω. J. Fluid Mech. 498, 257–288 (2004).
Lauga, E. Continuous breakdown of Purcell’s scallop theorem with inertia. Phys. Fluids 19, 061703 (2007).
Klotsa, D. As above, so below, and also in between: mesoscale active matter in fluids. Soft Matter 15, 8946–8950 (2019).
Vandenberghe, N., Zhang, J. & Childress, S. Symmetry breaking leads to forward flapping flight. J. Fluid Mech. 506, 147–155 (2004).
Alben, S. & Shelley, M. Coherent locomotion as an attracting state for a free flapping body. Proc. Natl Acad. Sci. USA 102, 11163–11166 (2005).
Klotsa, D., Baldwin, K. A., Hill, R. J., Bowley, R. & Swift, M. R. Propulsion of a two-sphere swimmer. Phys. Rev. Lett. 115, 248102 (2015).
Klotsa, D., Swift, M. R., Bowley, R. M. & King, P. J. Chain formation of spheres in oscillatory fluid flows. Phys. Rev. E 79, 021302 (2009).
Becker, A. D., Masoud, H., Newbolt, J. W., Shelley, M. & Ristroph, L. Hydrodynamic schooling of flapping swimmers. Nat. Commun. 6, 8514 (2015).
Li, L. et al. Vortex phase matching as a strategy for schooling in robots and in fish. Nat. Commun. 11, 5408 (2020).
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004).
Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).
Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).
Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).
Wu, B., VanSaders, B., Lim, M. X. & Jaeger, H. M. Hydrodynamic coupling melts acoustically levitated crystalline rafts. Proc. Natl Acad. Sci. USA 120, e2301625120 (2023).
Zhang, J., Alert, R., Yan, J., Wingreen, N. S. & Granick, S. Active phase separation by turning towards regions of higher density. Nat. Phys. 17, 961–967 (2021).
Driscoll, M. et al. Unstable fronts and motile structures formed by microrollers. Nat. Phys. 13, 375–379 (2017).
Kokot, G., Faizi, H. A., Pradillo, G. E., Snezhko, A. & Vlahovska, P. M. Spontaneous self-propulsion and nonequilibrium shape fluctuations of a droplet enclosing active particles. Commun. Phys. 5, 91 (2022).
Mecke, J. & Ripoll, M. Birotor hydrodynamic microswimmers: from single to collective behaviour. Europhys. Lett. 142, 27001 (2023).
Petroff, A. P., Wu, X.-L. & Libchaber, A. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Phys. Rev. Lett. 114, 158102 (2015).
Drescher, K. et al. Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 168101 (2009).
Oppenheimer, N., Stein, D. B. & Shelley, M. J. Rotating membrane inclusions crystallize through hydrodynamic and steric interactions. Phys. Rev. Lett. 123, 148101 (2019).
Tan, T. H. et al. Odd dynamics of living chiral crystals. Nature 607, 287–293 (2022).
Wiegmann, P. & Abanov, A. G. Anomalous hydrodynamics of two-dimensional vortex fluids. Phys. Rev. Lett. 113, 034501 (2014).
Hulsman, H. & Knaap, H. Experimental arrangements for measuring the five independent shear-viscosity coefficients in a polyatomic gas in a magnetic field. Physica 50, 565–572 (1970).
Avron, J., Seiler, R. & Zograf, P. G. Viscosity of quantum hall fluids. Phys. Rev. Lett. 75, 697 (1995).
Abanov, A. G., Can, T. & Ganeshan, S. Odd surface waves in two-dimensional incompressible fluids. SciPost Phys. 5, 010 (2018).
Knaap, H. & Beenakker, J. Heat conductivity and viscosity of a gas of non-spherical molecules in a magnetic field. Physica 33, 643–670 (1967).
Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. Odd viscosity in chiral active fluids. Nat. Commun. 8, 1573 (2017).
Soni, V. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188–1194 (2019).
Bililign, E. S. et al. Motile dislocations knead odd crystals into whorls. Nat. Phys. 18, 212–218 (2022).
Banerjee, D., Souslov, A. & Vitelli, V. Hydrodynamic correlation functions of chiral active fluids. Phys. Rev. Fluids 7, 043301 (2022).
Bowick, M. J., Fakhri, N., Marchetti, M. C. & Ramaswamy, S. Symmetry, thermodynamics, and topology in active matter. Phys. Rev. X 12, 010501 (2022).
Mecke, J. et al. Simultaneous emergence of active turbulence and odd viscosity in a colloidal chiral active system. Commun. Phys. 6, 1–13 (2023).
Guazzelli, E., Morris, J. F. & Pic, S. in Cambridge Texts in Applied Mathematics 192–212 (Cambridge Univ. Press, 2011).
Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405, 1033–1036 (2000).
Bickley, W. The secondary flow due to a sphere rotating in a viscous fluid. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 25, 746–752 (1938).
Climent, E., Yeo, K., Maxey, M. R. & Karniadakis, G. E. Dynamic self-assembly of spinning particles. J. Fluids Eng. 129, 379–387 (2006).
Ovseenko, R. I. & Ovseenko, Y. G. Drag of a rotating sphere. Fluid Dyn. 3, 78–82 (1968).
Schlichting, H. & Gersten, K. Boundary Layer Theory (Springer, 2017).
Angot, P., Bruneau, C.-H. & Fabrie, P. A penalization method to take into account obstacles in incompressible viscous flows. Num. Math. 81, 497–520 (1999).
Hester, E. W., Vasil, G. M. & Burns, K. J. Improving accuracy of volume penalised fluid–solid interactions. J. Comput. Phys. 430, 110043 (2021).
Hayday, A. A. Similar flows about axisymmetric bodies rotating in a fluid at rest. Appl. Sci. Res. Sect. A 14, 405–419 (1965).
Halsey, T. C., Anderson, R. A. & Martin, J. E. The rotary electrorheological effect. Int. J. Mod. Phys. B 10, 3019–3027 (1996).
Klapp, S. H. Collective dynamics of dipolar and multipolar colloids: from passive to active systems. Curr. Opin. Colloid Interf. Sci. 21, 76–85 (2016).
Partridge, B. L., Pitcher, T., Cullen, J. M. & Wilson, J. The three-dimensional structure of fish schools. Behav. Ecol. Sociobiol. 6, 277–288 (1980).
Liu, Q. & Prosperetti, A. Wall effects on a rotating sphere. J. Fluid Mech. 657, 1–21 (2010).
Portugal, S. J. et al. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature 505, 399–402 (2014).
Attanasi, A. et al. Collective behaviour without collective order in wild swarms of midges. PLoS Comput. Biol. 10, 1–10 (2014).
Cavagna, A. & Giardina, I. Bird flocks as condensed matter. Annu. Rev. Condens. Matter Phys. 5, 183–207 (2014).
Bain, N. & Bartolo, D. Dynamic response and hydrodynamics of polarized crowds. Science 363, 46–49 (2019).
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).
Nadal, F., Pak, O. S., Zhu, L., Brandt, L. & Lauga, E. Rotational propulsion enabled by inertia. Eur. Phys. J. E 37, 60 (2014).
Cox, R. G. The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23, 625–643 (1965).
Pedlosky, J. Geophysical Fluid Dynamics (Springer, 2013).