Self-propulsion, flocking and chiral active phases from particles spinning at intermediate Reynolds numbers (2024)

References

  1. Shariff, K. & Leonard, A. Vortex rings. Annu. Rev. Fluid Mech. 24, 235–279 (1992).

    Article ADS MathSciNet Google Scholar

  2. Saffman, P. G. in Cambridge Monographs on Mechanics 192–208 (Cambridge Univ. Press, 1993).

  3. Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

    Article ADS Google Scholar

  4. Needleman, D. & Shelley, M. The stormy fluid dynamics of the living cell. Phys. Today 72, 32–38 (2019).

    Article Google Scholar

  5. Happel, J. & Brenner, H. Low Reynolds number hydrodynamics: with special applications to particulate media. In Prentice-Hall International Series in the Physical and Chemical Engineering 23–57 (Prentice-Hall, 1965).

  6. Lauga, E. & Powers, T. R. The hydrodynamics of swimming microorganisms. Rep. Progress Phys. 72, 096601 (2009).

    Article ADS MathSciNet Google Scholar

  7. Childress, S. & Dudley, R. Transition from ciliary to flapping mode in a swimming mollusc: flapping flight as a bifurcation in Reω. J. Fluid Mech. 498, 257–288 (2004).

    Article ADS MathSciNet Google Scholar

  8. Lauga, E. Continuous breakdown of Purcell’s scallop theorem with inertia. Phys. Fluids 19, 061703 (2007).

    Article ADS Google Scholar

  9. Klotsa, D. As above, so below, and also in between: mesoscale active matter in fluids. Soft Matter 15, 8946–8950 (2019).

    Article ADS Google Scholar

  10. Vandenberghe, N., Zhang, J. & Childress, S. Symmetry breaking leads to forward flapping flight. J. Fluid Mech. 506, 147–155 (2004).

    Article ADS Google Scholar

  11. Alben, S. & Shelley, M. Coherent locomotion as an attracting state for a free flapping body. Proc. Natl Acad. Sci. USA 102, 11163–11166 (2005).

    Article ADS Google Scholar

  12. Klotsa, D., Baldwin, K. A., Hill, R. J., Bowley, R. & Swift, M. R. Propulsion of a two-sphere swimmer. Phys. Rev. Lett. 115, 248102 (2015).

    Article ADS Google Scholar

  13. Klotsa, D., Swift, M. R., Bowley, R. M. & King, P. J. Chain formation of spheres in oscillatory fluid flows. Phys. Rev. E 79, 021302 (2009).

    Article ADS Google Scholar

  14. Becker, A. D., Masoud, H., Newbolt, J. W., Shelley, M. & Ristroph, L. Hydrodynamic schooling of flapping swimmers. Nat. Commun. 6, 8514 (2015).

    Article ADS Google Scholar

  15. Li, L. et al. Vortex phase matching as a strategy for schooling in robots and in fish. Nat. Commun. 11, 5408 (2020).

    Article ADS Google Scholar

  16. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004).

    Article ADS Google Scholar

  17. Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012).

    Article ADS Google Scholar

  18. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

    Article ADS Google Scholar

  19. Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503, 95–98 (2013).

    Article ADS Google Scholar

  20. Wu, B., VanSaders, B., Lim, M. X. & Jaeger, H. M. Hydrodynamic coupling melts acoustically levitated crystalline rafts. Proc. Natl Acad. Sci. USA 120, e2301625120 (2023).

    Article Google Scholar

  21. Zhang, J., Alert, R., Yan, J., Wingreen, N. S. & Granick, S. Active phase separation by turning towards regions of higher density. Nat. Phys. 17, 961–967 (2021).

    Article Google Scholar

  22. Driscoll, M. et al. Unstable fronts and motile structures formed by microrollers. Nat. Phys. 13, 375–379 (2017).

    Article Google Scholar

  23. Kokot, G., Faizi, H. A., Pradillo, G. E., Snezhko, A. & Vlahovska, P. M. Spontaneous self-propulsion and nonequilibrium shape fluctuations of a droplet enclosing active particles. Commun. Phys. 5, 91 (2022).

    Article Google Scholar

  24. Mecke, J. & Ripoll, M. Birotor hydrodynamic microswimmers: from single to collective behaviour. Europhys. Lett. 142, 27001 (2023).

    Article ADS Google Scholar

  25. Petroff, A. P., Wu, X.-L. & Libchaber, A. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Phys. Rev. Lett. 114, 158102 (2015).

    Article ADS Google Scholar

  26. Drescher, K. et al. Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 168101 (2009).

    Article ADS Google Scholar

  27. Oppenheimer, N., Stein, D. B. & Shelley, M. J. Rotating membrane inclusions crystallize through hydrodynamic and steric interactions. Phys. Rev. Lett. 123, 148101 (2019).

    Article ADS Google Scholar

  28. Tan, T. H. et al. Odd dynamics of living chiral crystals. Nature 607, 287–293 (2022).

    Article ADS Google Scholar

  29. Wiegmann, P. & Abanov, A. G. Anomalous hydrodynamics of two-dimensional vortex fluids. Phys. Rev. Lett. 113, 034501 (2014).

    Article ADS Google Scholar

  30. Hulsman, H. & Knaap, H. Experimental arrangements for measuring the five independent shear-viscosity coefficients in a polyatomic gas in a magnetic field. Physica 50, 565–572 (1970).

    Article ADS Google Scholar

  31. Avron, J., Seiler, R. & Zograf, P. G. Viscosity of quantum hall fluids. Phys. Rev. Lett. 75, 697 (1995).

    Article ADS Google Scholar

  32. Abanov, A. G., Can, T. & Ganeshan, S. Odd surface waves in two-dimensional incompressible fluids. SciPost Phys. 5, 010 (2018).

    Article ADS Google Scholar

  33. Knaap, H. & Beenakker, J. Heat conductivity and viscosity of a gas of non-spherical molecules in a magnetic field. Physica 33, 643–670 (1967).

    Article ADS Google Scholar

  34. Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. Odd viscosity in chiral active fluids. Nat. Commun. 8, 1573 (2017).

    Article ADS Google Scholar

  35. Soni, V. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188–1194 (2019).

    Article Google Scholar

  36. Bililign, E. S. et al. Motile dislocations knead odd crystals into whorls. Nat. Phys. 18, 212–218 (2022).

    Article Google Scholar

  37. Banerjee, D., Souslov, A. & Vitelli, V. Hydrodynamic correlation functions of chiral active fluids. Phys. Rev. Fluids 7, 043301 (2022).

    Article ADS Google Scholar

  38. Bowick, M. J., Fakhri, N., Marchetti, M. C. & Ramaswamy, S. Symmetry, thermodynamics, and topology in active matter. Phys. Rev. X 12, 010501 (2022).

    Google Scholar

  39. Mecke, J. et al. Simultaneous emergence of active turbulence and odd viscosity in a colloidal chiral active system. Commun. Phys. 6, 1–13 (2023).

    Article Google Scholar

  40. Guazzelli, E., Morris, J. F. & Pic, S. in Cambridge Texts in Applied Mathematics 192–212 (Cambridge Univ. Press, 2011).

  41. Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid–air interface. Nature 405, 1033–1036 (2000).

    Article ADS Google Scholar

  42. Bickley, W. The secondary flow due to a sphere rotating in a viscous fluid. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 25, 746–752 (1938).

    Article Google Scholar

  43. Climent, E., Yeo, K., Maxey, M. R. & Karniadakis, G. E. Dynamic self-assembly of spinning particles. J. Fluids Eng. 129, 379–387 (2006).

    Article Google Scholar

  44. Ovseenko, R. I. & Ovseenko, Y. G. Drag of a rotating sphere. Fluid Dyn. 3, 78–82 (1968).

    Article ADS Google Scholar

  45. Schlichting, H. & Gersten, K. Boundary Layer Theory (Springer, 2017).

  46. Angot, P., Bruneau, C.-H. & Fabrie, P. A penalization method to take into account obstacles in incompressible viscous flows. Num. Math. 81, 497–520 (1999).

    Article MathSciNet Google Scholar

  47. Hester, E. W., Vasil, G. M. & Burns, K. J. Improving accuracy of volume penalised fluid–solid interactions. J. Comput. Phys. 430, 110043 (2021).

    Article MathSciNet Google Scholar

  48. Hayday, A. A. Similar flows about axisymmetric bodies rotating in a fluid at rest. Appl. Sci. Res. Sect. A 14, 405–419 (1965).

    Article Google Scholar

  49. Halsey, T. C., Anderson, R. A. & Martin, J. E. The rotary electrorheological effect. Int. J. Mod. Phys. B 10, 3019–3027 (1996).

    Article ADS Google Scholar

  50. Klapp, S. H. Collective dynamics of dipolar and multipolar colloids: from passive to active systems. Curr. Opin. Colloid Interf. Sci. 21, 76–85 (2016).

    Article Google Scholar

  51. Partridge, B. L., Pitcher, T., Cullen, J. M. & Wilson, J. The three-dimensional structure of fish schools. Behav. Ecol. Sociobiol. 6, 277–288 (1980).

    Article Google Scholar

  52. Liu, Q. & Prosperetti, A. Wall effects on a rotating sphere. J. Fluid Mech. 657, 1–21 (2010).

    Article ADS Google Scholar

  53. Portugal, S. J. et al. Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight. Nature 505, 399–402 (2014).

    Article ADS Google Scholar

  54. Attanasi, A. et al. Collective behaviour without collective order in wild swarms of midges. PLoS Comput. Biol. 10, 1–10 (2014).

    Article Google Scholar

  55. Cavagna, A. & Giardina, I. Bird flocks as condensed matter. Annu. Rev. Condens. Matter Phys. 5, 183–207 (2014).

    Article ADS Google Scholar

  56. Bain, N. & Bartolo, D. Dynamic response and hydrodynamics of polarized crowds. Science 363, 46–49 (2019).

    Article ADS MathSciNet Google Scholar

  57. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995).

    Article ADS MathSciNet Google Scholar

  58. Nadal, F., Pak, O. S., Zhu, L., Brandt, L. & Lauga, E. Rotational propulsion enabled by inertia. Eur. Phys. J. E 37, 60 (2014).

    Article Google Scholar

  59. Cox, R. G. The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23, 625–643 (1965).

    Article ADS Google Scholar

  60. Pedlosky, J. Geophysical Fluid Dynamics (Springer, 2013).

Download references

Self-propulsion, flocking and chiral active phases from particles spinning at intermediate Reynolds numbers (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Rueben Jacobs

Last Updated:

Views: 6590

Rating: 4.7 / 5 (57 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Rueben Jacobs

Birthday: 1999-03-14

Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

Phone: +6881806848632

Job: Internal Education Planner

Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.